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Summary. Interactions of large societal groups exhibit predominantly a flat structure. It means
that each member of the group has its aims, restricted perceiving, modelling, acting and eval-
uating abilities and interacts with a relatively small number of “neighbors”. This is the fully
scalable cooperation model worth of imitating. The paper introduces a formal model of this
type with individual members being Bayesian decision makers who use so called fully proba-
bilistic design of the optimal decision strategy. They are willing to cooperate with neighbors by
providing them probabilistic distributions they use for their decision making (DM). At present
research stage, interaction and communication structure are assumed to be given. Thus, the
group DM is determined by specifying how the offered non-standard (probabilistic) fragmental
information pieces should be exploited. The paper proposes a systematic procedure by for-
mulating and solving the exploitation problem in a Bayesian way. Essentially, it: (i) takes the
offered distributions as measured data; (ii) estimates an unknown global distribution describing
the cooperating neighbors; (iii) projects this estimate on the domains of interest to the respec-
tive neighbors; (iv) approximate each projected distribution by the distribution, which has the
form understandable to the decision maker.
The proposed procedure, whose properties are illustrated by simple examples, is of indepen-
dent interest since it can be used for model and aim elicitation.

1. Introduction

Decision making theories help in an extreme width of activities covering estimation, predic-
tion, pattern recognition, fault detection, control etc. Desirable theory of decision making
should cope with: (i) uncertainty; (ii) incomplete information; (iii) multiple aims, and (iv)
always limited abilities to sense, act and evaluate.

The requirements (i) and (ii) are well respected by the standard Bayesian decision mak-
ing, e.g., DeGroot (1970); Berger (1985). The theory of fully probabilistic decision making
(FPD), Kárný and Guy (2006); Kárný (2008), seems to meet the requirement (iii). The
requirement (iv) can generally be met only via a distributed decision making. In spite
of numerous attempts, e.g., Wolper and Tumer (1999, 2001); Vlassis (2003); Yiming et al.
(2003); Stirling (2004), etc., it still lacks a systematic, widely accepted, solution. This paper
proposes a promising cooperation methodology applicable under the following restrictions:
(a) each decision maker, called participant within the cooperative context, is Bayesian and
uses the FPD; (b) each participant is willing to share his decision elements with a small
amount of neighbors, i.e., the Bayesian decision makers who have non-empty intersections
of the operation domains with him; (c) each participant can extend his evaluation abilities
only mildly; for a discussion see Section 2.

If (a), (b) and (c) are met, the cooperating participants have to be equipped with a
computational interface that uses the offered fragmental probabilistic information pieces
for improving decision elements processed by participants. This interface has to combine
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(merge) partial and imprecise information pieces about uncertain and random environment.
This common problem has been addressed repeatedly, for instance, in connection with
probabilistic expert systems Cowell et al. (2003), knowledge elicitation, O’Hagan et al.
(2006), cooperation of participants, Andrýsek et al. (2007); Kárný et al. (2007), etc. None
of the existing methodologies seems to be complete and automatic enough to be built
in the thought interface. A proposition of such a methodology forms the core of this
paper, Sections 3, 4. Its basic idea “take all offered information pieces as outputs of noisy
information channels and try to estimate parameters of the underlying source” is not new,
e.g., J.Oakley and O’Hagan (2005) and references there. The attempts made are mostly case
specific and do not stress the simple methodological line: (i) take the gained information
pieces as data; (ii) interpret the description of the uncorrupted information source as an
unknown parameter; (iii) design suitable likelihood function and prior distribution; (iv)
perform the standard Bayesian point estimation. The paper follows this line and gets
plausible general results. This statement is illustrated by examples in Section 5. The design
of the methodology dominates over technical and computational aspects of the problem.
Consequently, the number of open problems is large, see Section 6. Complementary Section
7 provides Matlab scripts of algorithms generating the examples.

2. The cooperation scenario

Here, the considered decision-making scenario is introduced together with the basic notation
used throughout the paper. The decision maker and participant as his instance is referred
as “he” to keep language simple. This convention excludes neither females nor groups
(multivariate decision maker) and mechanical decision makers as well as their combinations.

2.1. Bayesian decision maker
A decision maker deals with a behavior B, a finite collection of random variables formed
by: (i) actions A that can be freely selected by him; (ii) observations that inform him about
the state of the closed decision loop formed by the decision maker and his environment; (iii)
internal states that he relates to the environment but he does not measure directly.

For presentation simplicity, the distribution of the behavior’s realizations b is described
by a (regular) probability density function (pdf) g(b) defined with respect to a dominating
measure db (typically, Lebesgue or counting one).

The decision maker designs and applies a causal decision rule R that maps known real-
izations p ∈ p∗ (a set of p s) of the random “past” P on admissible values a ∈ a∗ of actions
A. By definition, the realizations of the past are known when the action a is chosen. He acts
under uncertainty. It means that in the formal decomposition B = (F, A, P ) the “future”
F unavailable to the causal decision rule is always non-void.

For any realization of behavior b = (f, a, p) ≡(future, action,past), the pdf g(b) can be
factorized

g(b) ≡ g(f, a, p) = g(f |a, p)︸ ︷︷ ︸
environment model

× g(a|p)︸ ︷︷ ︸
randomized decision rule

× g(p).︸ ︷︷ ︸
pdf of the past

(1)

The considered decision maker tries to reach his decision aims in the best possible way under
given constraints. The considered Bayesian decision maker relies on a chosen environment
model g(f |a, p) and selects his randomized decision rule g(a|p) as a minimizer of an expected
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loss function expressing his aims. The Bayesian decision maker using the fully probabilistic
design (FPD) expresses both his aims and constraints via an “ideal” pdf Ig(b). The ideal
pdf describes the desirable behavior’s realizations: the higher is the value Ig(b) the more
desirable is b. He takes ln

(
g(b)
Ig(b)

)
as the loss function whose expectation is minimized. This

defines the optimal decision rule

Og(a|p) ∈ Arg min
{g(a|p)}

∫
g(b) ln

(
g(b)
Ig(b)

)
db,

︸ ︷︷ ︸
D(g|| Ig)≡ Kullback-Leibler divergence of the pdf g(b) on the pdf Ig(b)

(2)

where
∫ ·db means the definite multivariate integration over the domain of the integrand.

Proposition 1 (Solution of the FPD). The optimal decision rule (2) is given by
the formula

Og(a|p) ∝ Ig(a|p) exp[−ω(a, p)], ∝ is equality without specifying unique normalizing factor,

ω(a, p) ≡
∫

g(f |a, p) ln
(

g(f |a, p)
Ig(f |a, p)

)
df. (3)

Proof. The assertion follows from the following string of equalities and from the fact
that the Kullback-Leibler divergence D(g||h) reaches its smallest zero value for g = h, Vajda
(1989). In the string, the respective gs and their ideal counterparts Ig are regular pdfs with
respect to measures db, dp,da, df .

D(g|| Ig) =
∫

g(b) ln
(

g(b)
Ig(b)

)
db =

∫ ∫ ∫
g(f, a, p) ln

(
g(f, a, p)
Ig(f, a, p)

)
df dadp =︸︷︷︸

Fubini

∫
g(p)





ln
(

g(p)
Ig(p)

)
+

∫
g(a|p)


ln

(
g(a|p)
Ig(a|p)

)
+

∫
g(f |a, p) ln

(
g(f |a, p)
Ig(f |a, p)

)
df

︸ ︷︷ ︸
≡ω(a,p)


 da





dp

=
∫

g(p) ln
(

g(p)
Ig(p)

)
dp− ln{

∫
Ig(a|p) exp[−

defined in (3)︷ ︸︸ ︷
ω(a, p) ] da}

︸ ︷︷ ︸
the term independent of the optimized g(a|p)

+
∫

g(p)D(g(a|p)|| Og(a|p)︸ ︷︷ ︸
defined in (3)

) dp.

Remark 1.

• The ideal pdf Ig(b) indeed describes constraints on actions as the support of the optimal
decision rule (3) is contained in the support of its ideal counterpart.

• The explicit formula for the optimal decision rules is obtained even when designing
decision strategy, i.e., a sequence of decision rules, Kárný and Guy (2006).
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2.2. Cooperating participants
In quest for a (relatively) realistic, normative and scalable cooperation scheme, we adopt:

Assumption 1 (Selfish Bayesian participants of given abilities).

(a) Participants are Bayesian decision makers that use the fully probabilistic design.
(b) Participants, labelled by ι ∈ {1, 2, 3, . . .}, have fixed DM elements consisting of

b∗ι ≡ the set of behaviors considered by the ιth participant,

p∗ι ≡ the set of pasts considered by the ιth participant,

a∗ι ≡ the set of actions considered by the ιth participant,

f∗ι ≡ the set of futures considered by the ιth participant,

gι(fι|aι, pι) ≡ the pdf used by the ιth participant for modelling his environment, (1),

gι(aι|pι) ≡ the pdf describing the decision rule considered by the ιth participant, (1),

gι(pι) ≡ the pdf describing the past related to the ιth participant, (1),
Igι(bι) ≡ the ideal pdf expressing the aims and constraints of the ιth participant.

(c) Any participant ι has a fixed finite collection of neighbors, i.e., participants who have
non-empty intersections of behaviors’ sets with b∗ι .

Selfishness of the participants is reflected by the assumption that their DM elements are
uninfluenced by the presence of their neighbors in their environment. Without additional
measures, their success in DM depends heavily on their ability to model the environment
even under the presence of active neighbors. It is strongly limited by their limited abilities to
perceive, model, evaluate and act. The methodology described here takes these limitations
as given and tries to design participants’ cooperation without excessive demands on them:

Assumption 2 (Cooperation via sharing DM elements).

(a) Each participant ι is willing to offer some projections (marginal or conditional pdfs)
of pdfs gι(bι), Igι(bι) to his neighbors and they are willing to do the same for him.

(b) Each participant is willing to allocate a “reasonable” part of his evaluation abilities to
an interface that modifies his pdfs gι(bι), Igι(bι) by offered probabilistic information.

(c) There is no external mechanism for distinguishing between reliability and importance
of the pdfs offered by neighbors.

Remark 2. Assumption 2 (a) restricts the scheme to still selfish but cooperating par-
ticipants. The technical core of this paper consists of creating the DM-elements-modifying
interface. The term “reasonable” in Assumption 2 (b) anticipates that the participant will
be able to perform the proposed evaluations. This excludes generic use of the theory of
incomplete (Bayesian) games, Harsanyi (2004), which force the participant to model his
environment including his neighbors.

Assumption 2 (c) is the most restrictive one and models insufficient reasons for making
distinctions. This assumption can be relaxed in re-fined cooperation schemes in which the
participant extends his actions by an active weighting of the offered information pieces.
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3. Interface for exploiting the offered projections

Selfish cooperating participants have a chance to improve their performance when equipped
by a universal interface that processes the additional information coming from their neigh-
bors. The constructed interface processes the information pieces offered to a specific par-
ticipant ι. Under Assumption 1 (c), we can consider just a fixed finite set of neighbors
ι ∈ ι∗ ≡ {1, 2, . . . , ι̊}. They act on the union of behaviors’ sets

b∗ ≡ ∪ι∈ι∗b
∗
ι . (4)

The information pieces concerning the closed decision loop models gι(bι), ι ∈ ι∗, and
their ideal counterparts Igι(bι), ι ∈ ι∗, are processed in the same way. Thus, we can focus
on the former ones only.

3.1. Combination of pdfs as Bayesian estimation
When designing the interface, we can think of the collection of neighbors as a multivariate
participant dealing with a global closed decision loop model g(b). His action realization is
a = (a1, . . . , åι). His past p and future f realizations are composed of {pι}ι∈ι∗ , {fι}ι∈ι∗ in a
complex way whose details unimportant within the considered context. The global pdf g(b)
is unknown to respective neighbors. The interface has to process projections of imprecise
(noisy) versions gι(b) of the global pdf g(b), b ∈ b∗. For a fixed ι ∈ ι∗, let us decompose
b in slightly different way than before. This decomposition reflects extension of bι to b by
introducing the part uι unconsidered by the participant ι and gives the common name cι

to the action aι and the past pι

b ≡ (fι, cι, uι) (5)
≡ (future, conditioning formed by action and past, unconsidered)

variables for ιth participant.

Then, the general form of the projections dealt with is

gι(fι|cι) =
∫

gι(fι, cι, uι) duι∫
gι(fι, cι, uι) dfι duι

≡ Oι [gι(b)] . (6)

The introduced operator Oι, acting on the pdf gι(b) and generating environment model
used by ιth participant, is non-linear but deterministic. This simple observation helps us
in keeping complexity of the constructed interface low. We apply this operator to the final
combination only.

The combination is constructed initially assuming that the joint pdfs gι(b), ι ∈ ι∗, are
available for all b∗. Then, we address the general case when only projections gι(fι|cι) derived
from the joint pdfs gι(b) are available.

3.2. Point estimate of the global pdf
The considered construction of the pdfs’ combination (merging) casts the problem into
the standard Bayesian framework. The pdfs gι(b), b ∈ b∗, ι ∈ ι∗, are the “measured”
data that are “noisy” versions of the unknown problem parameter, which is the global pdf
g(b), b ∈ b∗. The point estimate ĝ(b) of the unknown parameter g(b) based on the data
gι(b), b ∈ b∗, ι ∈ ι∗, is the “natural” Bayesian merger searched for.
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We search for a point estimate g(·|V̂) of g(·) within a class of estimators g(·|V) given by
a statistic V ∈ V∗ under:

Assumption 3 (“Localness principle”). The relation of values g(b), gι, ι ∈ ι∗, mat-
ters in estimation of g(b) and construction of g(b|V̂).

If we: (i) stay within Bayesian framework; (ii) consider proper smooth loss functions; (iii)
adopt Assumption 3, then the best point estimate g(b|V̂) of g(b) is to be the minimizer of
the expected value of the Kullback-Leibler divergence, Bernardo (1979). Its minimization is
equivalent to the minimization of the expected value of the Kerridge inaccuracy, Kerridge
(1961). It gives the rule for selecting the best V̂

V̂ ∈ Arg min
V∈V∗

−
∫

E [g(b)|gι(b), ι ∈ ι∗] ln(g(b|V)) db, (7)

where the expectation is taken over uncertainty about values of the global pdf g(b).
Thus, the construction of g(b|V̂) relies on the evaluation of the conditional expectation

ĝ(b) ≡ E [g(b)|gι(b), ι ∈ ι∗] . (8)

Note that Assumption 3 allows us to use “shorthand” condition g(b), instead of the more
correct and complex g(·), b.

3.3. Knowledge on modelled relation
In order to obtain the conditional expectation (8), we have to model the relation of the
data to the unknown parameter. Definitely, the model can hardly be unique. Here, we
present two unsatisfactory and one promising variants. Their choice was driven by the wish
to make the estimation feasible, see Assumption 2 (b). We temporarily assume that the
treated pdfs have the common domain b∗ = b∗ι , ∀ι ∈ ι∗, (4). This assumption is relaxed in
Section 4.

All meaningful models have to respect the nature of the processed data (the pdfs
gι(b), ι ∈ ι∗,) and of the estimated parameter (the global pdf g(b)). They are non-negative
functions having the integral equal to unity. We ignore the latter condition in modelling
as it can be simply respected by normalization of the final merger. Various models are
obtained by complementing prior knowledge by various additional modelling assumptions.
Let us list first the common:

Assumption 4 (Conditions on pdf G(gι(b)|g(b), ·) relating {gι}ι∈ι∗ to g).

(a) Finite-dimensional functions Ψ, Ω exist such that

E[Ψ(gι(b))|g(b), Ψ,Ω] ≡
∫

Ψ(v)G(v|g(b),Ψ, Ω)dv = Ω(g(b)), ∀b ∈ b∗, ι ∈ ι∗, (9)

i.e., the expectation E[·|g(b), Ψ, Ω] is made over the random mechanism generating the
values v = gι(b), ι ∈ ι∗.

(b) Pdfs gι, ι ∈ ι∗, provided by different participants are conditionally independent for the
global pdf g given.

(c) Values vι, ṽι, of the pdf gι, vι ≡ gι(b), ṽι = gι(b̃) are independent for b 6= b̃ when
g, Ψ, Ω are given.
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(d) The constructed distribution of the pdfs’ values vι = gι(b), ι ∈ ι∗, b ∈ b∗, has the
highest entropy among those meeting (a), (b), (c).

Remark 3. Assumption (a) expresses our hope that the individual pdfs are related to
the global pdf. Respective models, discussed below, differ in the choice of functions Ψ and
Ω in (9). Their finite-dimensional ranges are inevitable for meeting Assumption 2 (b).
Independence of those functions of ι is a sort of common scaling, which is consistent with
the assumed lack of preferences among participants, cf. Assumption 2 (c).

Assumption (b) postulates independence of personal deviations and it is predominantly
acceptable. The independence assumption (c) and the assumption (d) offer an extreme
freedom in forms of the merged pdfs. This extreme attitude is consistent with the attempt
to create a universal interface.

Both data and estimated parameter are generally infinite dimensional and should be
treated as random processes. This machinery can be avoided as we search for an estimate
ĝ(b) of g(b) specified for each b ∈ b∗ (Assumption 3). Indeed, if we take any finite collection
of different behaviors (b, 1b, . . . , nb), n < ∞, then Assumption 4 (b), (c) restrict the search
to finite-dimensional distributions of the random vector

[g1(b), . . . , g̊ι(b)︸ ︷︷ ︸
α

, g1( 1b), . . . , g̊ι( 1b), . . . , g1( nb), . . . , g̊ι( nb)︸ ︷︷ ︸
β

] (10)

with conditionally independent entries. Thus, the distribution of the part of interest α in
(10) is uninfluenced by the distribution of the extendable part β. Moreover, the constructed
parametric model is fully determined by the marginal pdf G(v|g, Ψ,Ω) on values v = gι(b)
of the modelled pdfs.

Assumption 4 (d) defines G(v|g(b), Ψ, Ω) as an entropy maximizer restricted by linear-
in-G constraint implied by Assumption 4 (a). This convex optimization problem has the
solution

G(v|g(b),Ψ, Ω) =
exp[−λ′(b)Ψ(v)]∫∞

0
exp[−λ′(b)Ψ(v)] dv

, ′ denotes transposition, (11)

with the vector function of Lagrangian coefficients λ(b) solving the equation
∫

Ψ(v)G(v|g(b), Ψ, Ω)dv = Ω(g(b)), b ∈ b∗. (12)

The choice of the functions Ψ, Ω has to guarantee that integral in (11) is finite and (12)
(simply) solvable. The subsequent sections discuss candidates of this type.

3.4. Exponential model
In the cooperative context, it is “natural” to assume that values of the pdfs offered by
participants are unbiased guesses of the values of the unknown global pdf g, i.e.,

E[gι(b)|g(b)] = g(b). (13)

When considering just this, i.e., choosing Ψ, Ω in (9) as one-dimensional identities, the
constructed parametric model (11), (12) is the exponential one with λ(b) = 1/g(b)

G(gι(b)|g(b), (Ψ, Ω) ≡ identities) = G(gι(b)|g(b)) = χ(gι(b) ≥ 0)
1

g(b)
exp

[
−gι(b)

g(b)

]
, (14)
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with χ(·) denoting indicator of the set in its argument.
The Bayesian parameter estimation with the model (14) is easy. For the completely flat

improper prior distribution on g(b), it has posterior Gamma distribution with ι̊ degrees of
freedom and expectation equal to the arithmetic mean of the measurements

ḡa(b) = E[g(b)|gι(b), ι ∈ ι∗] ≡ 1
ι̊

∑
ι∈ι∗

gι(b). (15)

This merging is known as arithmetic pooling of opinions, O’Hagan et al. (2006). It is widely
used but it is adequately criticized for sensitivity to outlying opinions, which make it spread
too much. More importantly, the exponential model does not respect the fact that relative
errors of small values are usually larger than that of large values. The exponential model
is unable to describe this situation. Indeed, the exponential model has the property

standard deviation
expectation

= 1. (16)

3.5. Truncated normal model
In order to avoid the unpleasant property (16), we add to the unbiasedness (13) the require-
ment on the second moment

E[g2
ι (b)|g(b), ρ(b)] = ρ(b) + g2(b), ρ(b) > 0,

i.e., Ψ(v) = [v, v2], Ω(g(b)) = [g(b), ρ(b) + g2(b)].
In this case, the parametric distribution (11) becomes a normal one, truncated on non-

negative domain of the modelled values

G(gι(b)|g(b), ρ(b)) = χ(gι(b) ≥ 0)
Ngι(b)(µ(b), r(b))∫∞

0
Nv(µ(b), r(b)) db

, Nv(µ, r) ≡
exp

[
− (v−µ)2

2r

]
√

2πr
.

Evaluation of the posterior pdf is relatively complex due to the dependence of the de-
nominator on unknown parameters µ(b), r(b). In principle, it is possible to developed an
adequate, relatively fast, numerical procedure for doing it. The real trouble is that param-
eters µ(b), r(b) are related to moments in relatively complex way. For instance, if we rely
on unbiased measurements (13), we have to respect the highly non-linear relation

g(b) = µ(b) +
√

r(b)
Nv=0(µ(b), r(b))∫∞

0
Nv(µ(b), r(b)) dv

.

Relation of the parameter r(b) to the variance ρ(b) is even more complex Greene (2003).
The overall complexity makes us to drop the development in this direction.

3.6. Log-normal model
Here, we again require unbiasedness and allow variance of deviations gι(b)− g(b) be tuned
independently. The non-negativity of processed data is, however, respected by relating their
logarithms. We have to adopt:

Assumption 5 (Partial compatibility of pdfs). The pdfs gι(b), ι ∈ ι∗, and g(b)
are strictly positive on b∗.
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Under Assumption 5 and modelling Assumptions 4 with

E[ln(gι(b))|g, ρ] = ln(µ(b)), E[ln2(gι(b))|g, ρ] = ρ(b) + µ2(b),

we get G(v|ρ, ρ) (11) in log-normal form. The unbiasedness requirement E[gι(b)|g(b), ρ(b)] =
g(b) and the formula for the mean of the log-normal distribution lead to the definition

log(µ(b)) ≡ log(g(b))− 0.5ρ(b).

We take completely flat prior on ρ(b). To get finite ĝ(b) (8), the prior pdf has to fall to
infinity faster than exp

(− 2ρ
ι̊

)
. This makes us to select

G(g(b), ρ(b)) ∝ exp
(
− (2 + ε)ρ(b)

ι̊

)
, ε > 0 arbitrarily small.

It gives the posterior pdf G(g(b), ρ(b)|gι(b), ι ∈ ι∗) of the form (the argument b is temporarily
dropped)

G(g, ρ|gι, ι ∈ ι∗) ∝ ρ−
ι̊
2 exp

(
− (2 + ε)ρ

ι̊

)
exp

{
− ι̊

2ρ

[(
ln

(
g

ḡ

)
− 0.5ρ

)2

+ ρ̂

]}
(17)

ḡ ≡
[∏

ι∈ι∗
gι

] 1
ι̊

(geometric mean) (18)

ρ̂ ≡ 1
ι̊

∑
ι∈ι∗

ln2(gι)− ḡ2 (normalized least-squares remainder). (19)

Subsequent evaluation of integrals Ek, k = 0, 1 is needed to find normalization of the
posterior pdf (17) and to compute its first moment. {text} written in the equality chain
indicates the used substitution.

Ek ≡
∫ ∞

0

gk exp

{
− ι̊

2ρ

[(
ln

(
g

ḡ

)
− 0.5ρ

)2
]}

dg

=
{

x = ln
(

g

ḡ

)
− 0.5ρ, g = ḡ exp(x + 0.5ρ), dg = g dx

}

= ḡk+1 exp(0.5(k + 1)ρ)
∫ ∞

−∞
exp

{
(k + 1)x− ι̊x2

2ρ

}
dx

= (ρ2π/̊ι)0.5ḡk+1 exp
[
(k + 1)2ρ

2̊i

]
.

This leads to the factorized form of the posterior pdf in which the last factor is proportional
to the normalized posterior pdf of g conditioned, moreover, on ρ

G(g, ρ|gι, ι ∈ ι∗) ∝ ρ−
ι̊−1
2 exp

{
− ι̊ρ̂

2ρ
− (3 + ε)ρ

2̊i

} exp
{
− ι̊

2ρ

(
ln

(
g
ḡ

)
− 0.5ρ

)2
}

ρ0.5ḡ exp
(

ρ

2̊i

) .

It gives the posterior expectation of g conditioned moreover on ρ

E[g|ρ, gι, ι ∈ ι∗] = E1/E0 = ḡ exp
(

3
2̊ι

ρ

)
.
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The marginal posterior pdf on ρ reads

G(ρ|gι, ι ∈ ι∗) ∝ ρ−
ι̊−1
2 exp

{
− ι̊ρ̂

2ρ
− (3 + ε)ρ

2̊i

}
.

This is a proper pdf and provides the finite expectation of exp
(

3ρ
ι̊

)
needed for the evaluation

of ĝ(b) ≡ E[g|gι, ι ∈ ι∗] = E {E[g|ρ, gι, ι ∈ ι∗]|gι, ι ∈ ι∗}. The evaluation of the “outer”
expectation has no closed form. This makes us to substitute it by inserting maximum a
posteriori probability estimate of ρ into the “inner” expectation while letting ε → 0. It
gives

ĝ(b) ≡ E [g(b)|gι(b), ι ∈ ι∗] ≈ ḡ(b) exp


 ι̊

ι̊− 1
2ρ̂(b)

1 +
√

1 + 12ρ̂(b)
(̊ι−1)2


 . (20)

Note that the approximate equality has to be taken as approximate proportionality.
The formula (20) increases the geometric mean (18) whenever the normalized least

squares remainder ρ̂(b) (19) is large. It is intuitively plausible property illustrated by Figure
1 presenting the merging results according to the formula (20). Details of the experiment
are in the script testsingle generating it, see Section 7.
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Fig. 1. Comparison of various merging possibilities (the script testsingle in Section 7): processed
pdfs blue dots; the proposed merger red line; geometric mean (18) green stars; arithmetic mean (15)
black circles.
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4. Processing fragmental information pieces

The simplicity of the merging described in previous section stems from the fact that the
inherent complexity of the projecting operators (6) is avoided. This makes us to extend the
processed marginal and conditional pdfs to the joint space of behaviors b∗ and then combine
these extensions according to (20). This idea is elaborated here.

The ιth participant deals with, cf. (5),

bι ≡ (fι, cι)
≡ (modelled, conditioning) variables for ιth participant,

where at least fι is non-void.
Let us construct an extension egι(b) of the given pdf gι(fι|cι) to the global space b∗ of

behaviors b. This extension should approximate the global pdf as tightly as possible, i.e.,
Bernardo (1979), to minimize the expected Kerridge distance − ∫

ĝ(b) ln( egι(b)) db. At the
same time, it should preserve the given pdf gι(fι|cι). These requirements determine the
extension uniquely

egι(b) = ĝ(uι|fι, cι)gι(fι|cι)ĝ(cι), (21)

where ĝ(·|·) are projections of the constructed estimate ĝ(b) (8) of the global pdf g(b).
Inserting the extensions egι(b) into the formula (20) for the estimate of the global pdf,

we get the final non-linear equation for it

ĝ(b) ∝ eḡ(b) exp


 ι̊

ι̊− 1
2 eρ̂(b)

1 +
√

1 + 12 eρ̂(b)
(ι−1)2


 . (22)

The left superscript e stresses that the geometric mean (18) and normalized least-squares
remainder (19) are evaluated from the pdfs egι(b), ι ∈ ι∗ (21).

The explicit solvability of (22) can hardly be expected but the equation is “naturally”
prepared for solution by successive approximations.

Note that after finding ĝ(b), it is necessary to compute its ι-specific projections ĝι(fι|cι) ≡
Oι(ĝ(b)) (6) as mergers provided to respective participants.

5. Illustrative examples

5.1. Processing of fragmental information
The example demonstrates behavior of the proposed merging (22) in a simple case with
two-dimensional behavior b. The 1st participant provides only marginal pdf on the 1st
entry of b, the 2nd one offers the joint pdf. The proposed methodology is implemented in
the script testfragment, Section 7, which generated self-explaining illustrative Figures 2, 3,
4 and 5.

The shown results were obtained after 8 iterations when the norm between two successive
iterations dropped below the threshold 1e-5.

Note that the results are strongly influenced by the correlation between b-entries consid-
ered by the 2nd participant: for higher correlations, the shifts of the marginal pdf describing
the 2nd behavior entry are more pronounced.
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Fig. 2. Two-dimensional merging result. The 1st participant offered marginal pdf on the axis heading
to the right (the script testfragment in Section 7).

5.2. Elicitation of prior knowledge
This example indicates the use of the developed methodology to knowledge elicitation.

Let us assume that the participant ι = 1 has a prior pdf g1(b) on behavior b and the
participant ι = 2 offers him partial information in the form of a (generalized) moment

µ =
∫

φ(b)g2(b) db, (23)

where the finite-dimensional vector µ and the vector function φ(b) are the offered proba-
bilistic elements. In harmony with the proposed methodology, the offered information (23)
is extended to the pdf eg2(b). The extension eg2(b) is merged with g1(b) according to (22).
The extension eg2(b) is again taken as the pdf nearest to the constructed merger ĝ(b) in
Kerridge-inaccuracy sense under the constraint (23). It has the form

eg2(b) ∝ ĝ(b) exp[−ζ ′φ(b)] (24)

with the vector ζ chosen so that g2(b) = eg2(b) in (24) meets (23).
Figure 6 presents the result of such merging with scalar b, µ and φ(b), obtained after

11 iterations of successive approximations, for µ = 0.8 and φ(b) = b, i.e., for the offered
information on expected value of b. Figure 7 shows the result of such merging, obtained
also after 11 iterations, for µ = 0.5 and φ(b) = χ(b > −1), i.e., for the offered information
on the median of b. The results were obtained with the script telicit, Section 7.
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Fig. 3. Two-dimensional pdf offered by the 2nd participant (the script testfragment in Section 7).

The examples illustrate plausible properties of the proposed methodology. To get prac-
tically useful result, the approximation task (7) is to be solved within an appropriate class
g(b|V), V ∈ V∗, containing typically more regular functions than the obtained ĝ(b).

6. Concluding remarks

In this paper, merging of participants’ information and aims is treated as Bayesian estima-
tion problem. This idea was already proposed and tested but the presented solution is more
complete and leads to feasible algorithms covering infinite-dimensional cases. The case with
different observation spaces was not treated in this way before.

The important methodological shift consists in a clear separation of non-linear deter-
ministic mapping of joint distributions to the supplied conditional or marginal pdfs from
handling the influence of “personal noise”. The proposed modelling and processing order:
combine noisy joint distributions and then map the results on observed lower dimensional
pdfs is (probably) new and computationally simpler. The application of this way to frag-
mental information pieces, given by noisy projections of the underlying global pdf is enabled
by extending them to a full space in a unique, well-justified, way.

The paper proposes a unified methodology. It does not mean that there is no ambiguity
in solving a specific problem. However, the modelling of the relations of the unknown merger
(parameter) to respective processed pdfs (data) is the only optional step. Thus, modelling
can only be blamed if the results are not satisfactory enough.
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Fig. 4. Marginal pdfs in the 1st behavior entry characterizing merging of fragmental information (the
script testfragment in Section 7). Processed pdfs blue dots; merger red line.

The algorithm based on log-normal model provides practically applicable algorithm
whose results lie between usual, often too spread, arithmetic pooling and geometric one,
which is often discarded due to the over-optimistic concentration of the results.

Naturally, a lot remains to be solved. The following problems should be surely addressed.

• Uniqueness of the participant-specific projections of the merger (22) is conjectured
but not proved.

• General applicability of successive approximations for solving (22) is not verified.

• The important case with offered sample pdfs is not covered due to the required non-
singularity of processed pdfs (the only restriction on compatibility of the processed
information pieces). Ideally, the merging should reduce to the Bayes rule when the
sample pdf is processed.

• Conversion of offered parametric distributions and generalized moments to non-parametric
pdfs has to be solved systematically. It will represent a sort of communication pro-
tocol studied and used in connection with closely related multi-agent systems (MAS,
Vlassis (2003)).

• Algorithms projecting non-parametric estimates to a priori given families specified by
finite dimensional statistic need to be developed.
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Fig. 5. Marginal pdfs in the 2nd behavior entry characterizing merging of fragmental information (the
script testfragment in Section 7). Processed pdf blue dots; merger red line.

• Actions controlling communications have to be explicitly considered and their opti-
mization design. These extensions have to respect the considered flat structure and
will create counterparts of negotiation, bargaining and conflict resolution strategies
studied in MAS.

• Study and exploitation of the extensive overlap with a range of existing techniques
originating in knowledge elicitation, probabilistic expert systems, MAS, etc. should
be performed.

Even this demanding list is by no means complete but the importance of the aim and the
results obtained make their solution worth trying.
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7. Matlab scripts

Here, Matlab scripts are attached for anybody to play with the simple examples presented
in Sections 3.2, 4. The function geo implements the key merging formula (20).

% testsingle: test of the merging of continuous pdfs of a single variable
%
% designed = MK
% updated = 8-08-08
% project = Puzzle, UTIA-IMATI
%
% call: geo

close all
clear all

% Generating of the processed pdfs
%
s = [-4:0.01:4]; % behavior’s grid on which pdfs are merged
g = [exp(-0.5/1*(s+1.5).^(2));% the merged pair of un-normalized pdfs

exp(-0.5/5*(s-2).^(2))];
[po,so]=size(g); % the number of participants, grid cardinality
g = eye(po)/diag(sum(g,2))*g; % normalization of the sampled merged pdfs
% merging
[ghat,ge,ar,hatrho]=geo(g); % merger, geometric and arithmetic mean,

% least-squares remainder
% graphical outputs
figure(1)
plot(s,g,’b.’,s,ghat,’r-’,s,ge,’g*’,s,ar,’ko’)
xlabel(’behavior value’)
ylabel(’pdf value’)
print -depsc ’t3-fig1’
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==========================================================================
function [hatg,ge,ar,hatrho]=geo(g)
% merging several pdfs
% [hatg,ge,ar,hatrho]=geo(g)
% hatg = merged pdf
% ge = geometric mean;
% ar = arithmetic mean
% g = array of pdfs evaluated on the same argument grid:
% pth row corresponds with pth participant
% hatrho = normalized least-squares reminder
%
% designed = MK
% updated = 11-8-08
% project = Puzzle, UTIA-IMATI
%

% problem dimensions
[po,no]=size(g); % [the number of participants,grid cardinality]
g = eye(po)/diag(sum(g,2))*g;% normalization of participants’ pdfs
ar = zeros(1,no); % arithmetic mean
ge = zeros(1,no); % geometric mean
sum(g,1)/po;
ge = prod(g).^(1/po); % geometric mean
ge = ge/sum(ge); % geometric mean
hatrho = zeros(1,no); % normalized least squares remainder
for p=1:po % point-wise summing over participants

z = g(p,:);
y = log(z);
ar = ar + z;
ge = ge + y;
hatrho =hatrho+y.^2;

end
ar = ar/po; % arithmetic mean
ge = exp(ge-max(ge)); % geometric mean
ge = ge/sum(ge); % normalization
hatrho = max(hatrho/po - ge.^(2),1e-20);% normalized least squares remainder

% with numerical pre-cation
hatg = log(ge)+po/(po-1)*2*hatrho./(1+(1+12*hatrho/(po-1)^2).^(0.5));

% scaling of the result
hatg = exp(hatg-max(hatg)); % normalization
hatg = hatg/sum(hatg);

==========================================================================
% testfragment: test of the behavior of merging of continuous pdfs
% on different observation spaces
%
% designed = MK
% updated = 14-08-08
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% project = Puzzle, UTIA-IMATI
%
% call: geo, norm

close all
clear all

% Generating of the processed pdfs
%
s1 = [-4:0.03:4]; % grid of the first variable
s2 = s1; % grid of the second variable
po = 2; % the number of participants
so = length(s1); % the number of discrete points

mu1 = -3; % mean of the first participant data
r1 = 2; % variance of the first participant data
g1 = exp(-0.5/r1*(s1-mu1).^(2));

% probabilities provided by the 1st participant
g1 = g1/sum(g1); % normalization
mu2 = [2,1]; % mean of the second participant data
r2 = 1.5*[1 0.3;0.3 1];% covariance of the second participant data
g2 = zeros(so,so);
om = r2^(-1);
for i=1:so;

for j=1:so
g2(i,j)= exp(-0.5*([s1(i),s2(j)]-mu2)*om*([s1(i),s2(j)]-mu2)’);

end
end

g2=g2/sum(sum(g2)); % normalization
% tuning knobs of the merging algorithm
no = 1000; % upper bound on the number of iterations
eps1 = 1e-5; % threshold for stopping of iterations
% auxiliary arrays
f1e = zeros(size(g2)); % extension of the first marginal
nor = 0; % norm for stopping
so2 =so*so;
ghato= ones(1,so2); % array for the old estimate of the merger
ghat = ones(1,so2)/so2; % row ordered merger
% successive approximations for solving equation determining the merger
fg =zeros(size(g2)); % auxiliary array
for n=1:no

f=[];
% extension of the fragmental information
for i=1:so

il=(i-1)*so+1;iu=i*so;
fg(i,:) = ghat(il:iu);
g1e(i,:) = g1(i)*fg(i,:)/sum(fg(i,:)); % extension of the 1st pdf
f=[f,[g1e(i,:);g2(i,:)]];% row ordering of data
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end
[ghat,ge,ar,rhato]=geo(f); % merging of the extended processed pdfs
nor = norm(ghat-ghato);
if n ==1, initial_error = nor,end
if nor< eps1

n,break
else

ghato=ghat;
end

end
% characterization of the iterative process run
terminal_norm = nor, iteration_termined = n
% graphical outputs
for i=1:so % back to matrix form

il=(i-1)*so+1;iu=i*so;
fg(i,:) = ghat(il:iu);

end
g11 = g1; % first marginal of the first participant
g21 = sum(g2,2); % first marginal of the second participant
g22 = sum(g2,1); % second marginal of the second participant
hg1 = sum(fg,2); % estimate of the first marginal
hg2 = sum(fg,1); % estimate of the second marginal

% title(’estimate of the global pdf’)
figure(1)
mesh(s1,s2,fg)
print -depsc ’t4-fig1’
% title(’joint pdf offered by the second participant’)

figure(2)
mesh(s1,s2,g2)
print -depsc ’t4-fig2’
% 1st marginal
figure(3)
plot(s1,g11,’b.’,s1,g21,’b.’,s1,hg1’,’r-’)
xlabel(’1st entry of behavior value’)
ylabel(’marginal pdf value’)
% ’processed data blue dots, merger red line’
print -depsc ’t4-fig3’
% 2nd marginal
figure(4)
plot(s1,hg2’,’r-’,s1,g22’,’b.’)
xlabel(’2nd entry of behavior value’)
ylabel(’marginal pdf value’)
print -depsc ’t4-fig4’
% ’processed data blue dots, merger red -’

============================================================

% telicit: test of the merging applied to elicitation tasks
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%
% designed = MK
% updated = 8-08-08
% project = Puzzle, UTIA-IMATI
%
% call: geo, fzero, norm, extend

close all
clear all

% Generating of the processed pdfs
%
s1 = [-4:0.01:4]; % grid of the variable
po = 2; % the number of participants
so = length(s1); % the number of discrete points
g1 = exp(-0.5*s1.^2); % distribution of the 1st participant
g1 = g1/sum(g1); % normalization 1st distribution

% mean value processed
cas = 1; % mean value offered by the 2nd participant
par = 0.8; % the value offered
name =’mean’; % label for figures
% quantile processed
cas = 2; % quantile value offered by the 2nd participant
par = [-1,0.5] % [quantile,its probability]
name=’quant’; % label for figures

% tuning knobs of the merging algorithm
no = 1000; % upper bound on the number of iterations
eps1 = 1e-5; % threshold for stopping of iterations
ghat = g1.^(0.001); % initial guess on the global distribution
ghat = ghat/sum(ghat);

% auxiliary arrays
g2e = zeros(size(ghat));% extension of the first marginal
nor = 0; % norm for stopping
ghato= ones(1,so); % array for the old estimate of the merger
% successive approximations for equation determining the merger
zeto = -0.3; % old guess of Lagrangian
for n=1:no

zet = fzero(@(zet) extend(zet,ghat,s1,cas,par),zeto);
[dev,g2e] = extend(zet,ghat,s1,cas,par); % the final extension
g=[g1; % merged data

g2e];
[ghat,ge,ar,hatrho]=geo(g); % merging of the extended pdfs
nor = norm(ghat-ghato);
if n ==1, initial_error = nor,end
if nor< eps1
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n,break
else

zeto=zet;
ghato=ghat;

end
end
% characterization of the iterative process run
terminal_norm = nor, iteration_termined = n
% graphical outputs
% title(’data blue*, merger red-, extended pdf green.’)
figure(1)
plot(s1,g1,’b.’,s1,ghat,’r-’,s1,g2e,’g*’)
xlabel(’behavior values’)
ylabel(’pdf values’)
print(’-depsc’,name)

==============================================================

function [dev,fe] = extend(zet,fhat,s1,cas,par)
% for a Lagrangian-factor guess extends pdf fhat
% to pdf fe on grid s1 and evaluate constraints deviation dev
% supported cases distinguished by cas
%
% [dev,fe] = extend(zet,fhat,s1,cas,par)
%
% dev = deviation in the constrains
% fe = guess of the extended distribution corresponding to the zet
% zet = guess of the Lagrangian factor
% fhat = guess of the merged pdf
% cas = [1,2] given [mean, quantile]
% par = mean value if cas = 1
% [quantile value,probability of the quantile] cas = 2
%
% designed = MK
% updated = 2-08-08
% project = Puzzle, UTIA-IMATI

if cas == 1 % mean value
fe = log(fhat)-zet*s1;
fe = exp(fe-max(fe));
fe = fe/sum(fe); % extended pdf
dev=sum(s1.*fe)-par; % deviation in mean

else
if cas == 2

val = s1> par(1);
fe = log(fhat)- zet*val;
fe = exp(fe-max(fe));
fe = fe/sum(fe); % extended pdf
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dev=sum(val.*fe)-par(2); % deviation in probability
else
error(’case unsupported’)

end
end

file=puzzle2.tex, August 14, 2008


